Bidens pilosa Formulation Improves Blood Homeostasis and β-Cell Function in Men: A Pilot Study

Bun-Yueh Lai, 1 Tzung-Yan Chen, 2,3 Shou-Hsien Huang, 2,4 Tien-Fen Kuo, 2 Ting-Hsiang Chang, 2,5 Chih-Kang Chiang, 6 Meng-Ting Yang, 2 and Cicero Lee-Tian Chang 7

1 Chun-Yueh Biomedical Technology Co., Ltd., Taipei 116, Taiwan
2 Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
3 Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
4 Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
5 Department of Cancer Biology and Medicine, China Medical University, Taichung 404, Taiwan
6 Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
7 Department of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan

Correspondence should be addressed to Cicero Lee-Tian Chang; ltchang@nchu.edu.tw

Received 18 August 2014; Accepted 18 September 2014

1. Introduction

Type 2 diabetes is a global health problem that carries a large economic burden. According to the International Diabetes Foundation 382 million people were diagnosed with diabetes in 2013 and this number is expected to rise to 592 million by 2035 [1]. Current oral antidiabetic drugs have unmet efficacy and undesirable side effects in patients often leading to lethal complications [2]. Therefore, continuing the search for new diabetes treatments is a priority.

Over 1200 plants are purported to have antidiabetic activity [3, 4]. Among them, Bidens pilosa has long been used as an antidiabetic herb in Asia, America, and Africa [5]. However, no clinical trial has ever evaluated the efficacy and safety of this herb [3, 6]. We and other groups have shown that Bidens pilosa has hypoglycemic activity in diabetic db/db mice and alloxan-treated mice [7–9]. Three polyynes from Bidens pilosa were found to have glucose-lowering activity [8, 9]. Among them, cytopiloyne identified from Bidens pilosa had better glucose-reducing activities in diabetic mice than the other two polyynes [9]. We also demonstrated that Bidens pilosa and cytopiloyne lowered blood glucose via insulin secretion and islet protection [4]. Further, mechanistic studies showed that cytopiloyne and, probably, Bidens pilosa exerted antidiabetic action via their regulation of β-cell function [4].

Despite some claims of human antidiabetic activity, there have been no modern clinical evaluations of Bidens pilosa in humans. In this study, we evaluated the efficacy and safety of a Bidens pilosa formulation in human diabetic and healthy subjects.

2. Materials and Methods

2.1. Efficacy Pilot Study. Fourteen volunteers whose fasting blood glucose was more than 126 mg/dL and/or whose 2 h
Test report on pesticides and heavy metals

Test items: 251 pesticides listed by Taiwanese Ministry of Health and Welfare (MHW)

Methods: LC/MS/MS and GC/MS/MS were used to analyze the pesticides and the extraction was conducted using Method of Test for Pesticide Residues in Foods-Multiresidue Analysis (Taiwanese MHW (2012)) and AOAC Official method (2007) Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate

Results: Negative for the listed pesticides

Test items: Heavy metals

Methods: General Method of Test for Heavy Metals (Taiwanese MHW (2011))

Results: Undetectable for As, Pb, Cd and Hg

Figure 1: Report on the contamination of pesticides and heavy metals in the B. pilosa formulation used in this study. The content of the pesticides and heavy metals in the B. pilosa formulation was determined and certificated by SGS Taiwan Ltd.

postmeal prandial blood glucose was more than 200 mg/dL were diagnosed as diabetics based on the American Diabetes Association criteria. They were grouped into 2 groups. One group, 6 diabetics, only consumed the B. pilosa formulation (probetacell) orally at a dose of 400 mg, ter in die, for 3 to 7 months. The other group, 8 diabetics, took antidiabetic drugs plus the B. pilosa formulation. Their blood samples were collected before and after their treatment. Biochemical parameters of the blood samples from both groups were determined (Table 1) based on the manufacturers’ protocols. Briefly, triglyceride (TRIG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and blood urine nitrogen (BUN) were analyzed with 7600 Clinical Analyzer (Hitachi). Serum insulin was quantified with the ADVIA Centaur ELISA Kits (Siemens). HbA\textsubscript{1c} was measured using a DCA 2000 analyzer (Bayer). The B. pilosa formulation (probetacell) is a commercial functional food in Taiwan (Chun-Yueh Biomedical Technology Co., Ltd.) and HPLC was used to control the quality of the formulations (see Sup. Figure 2 in Supplementary Material available online at http://dx.doi.org/10.1155/2014/832314).

2.2. Safety Pilot Study. Blood from seven healthy volunteers was collected before and after they took the B. pilosa formulation (probetacell) orally at a daily dose of 400 mg per person, ter in die, for 3 months. The biochemical parameters (Table 2) of the blood samples were analyzed as above.

2.3. Statistical Analysis. Data from three independent experiments or more are presented as mean ± SEM. Student’s \(t\)-test was used for statistical analysis of the differences between groups. A \(P\) value (*) of less than 0.05 was considered to be statistically significant.

3. Results and Discussion

3.1. B. pilosa Formulation Improves Type 2 Diabetes via Promotion of \(\beta\)-Cell Function. Our group and others previously demonstrated that B. pilosa exerted antidiabetic activity in mouse models, so in this study we verified this effect in humans. First, we evaluated the beneficial effect of the B. pilosa formulation on subjects with type 2 diabetes. We found that those who only took the B. pilosa formulation had fasting blood glucose levels of 201.7 ± 83.3 and 123.3 ± 18.6, respectively, before and after treatment with the B. pilosa formulation (Table 1). Similarly, the diabetics had HbA\textsubscript{1c} levels of 9.1 ± 1.7 and 7.2 ± 0.7, respectively, before and after the treatment with the B. pilosa formulation (Table 1). The HOMA-IR and HOMA-\(\beta\) are commonly used to assess insulin resistance and \(\beta\)-cell function, respectively [10]. Treatment with the B. pilosa formulation significantly increased \(\beta\)-cell function of the participants as shown by the HOMA-\(\beta\) values. In contrast, the treatment did not affect their insulin resistance, as shown by the HOMA-IR values (Sup. Figure 1). Accordingly, the B. pilosa formulation boosted serum insulin level in healthy persons (Table 2). Besides, we tested the combination effect of the B. pilosa formulation. We found that those who only took antidiabetic drugs and the B. pilosa formulation had fasting blood glucose levels of 220 ± 70.9 and 150 ± 51.3, respectively, before and after the combination treatment (Table 1). However, the combination use of the B. pilosa formulation seemed better than its single use based on the data on the decreased ratio of fasting blood glucose and HbA\textsubscript{1c} (Table 1).

Overall, the data from this study are in good agreement with previous studies in mice [4] that suggested that B. pilosa enhanced insulin secretion and islet preservation via \(\beta\)-cell regulation.
<table>
<thead>
<tr>
<th>Parameters & Drug Regimen</th>
<th>Age (yr)</th>
<th>Diabetic History (yr)</th>
<th>Treatment Time (m)</th>
<th>FBG (mg/dL)</th>
<th>Decreased Ratio</th>
<th>P Value</th>
<th>HbA1c (%)</th>
<th>Decreased Ratio</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP without antidiabetic drugs (n = 6)</td>
<td>65.6 ± 10.5</td>
<td>7.0 ± 5.3</td>
<td>5.0 ± 2.0</td>
<td>201.7 ± 83.3</td>
<td>0.33 ± 0.20</td>
<td>0.048</td>
<td>9.1 ± 1.7</td>
<td>7.2 ± 0.7</td>
<td>0.19 ± 0.07</td>
</tr>
<tr>
<td>BP with antidiabetic drugs (n = 8)</td>
<td>61.3 ± 11.6</td>
<td>12.4 ± 6.3</td>
<td>3.6 ± 0.9</td>
<td>220 ± 70.9</td>
<td>0.31 ± 0.14</td>
<td>0.040</td>
<td>8.6 ± 0.6</td>
<td>7.7 ± 0.7</td>
<td>0.10 ± 0.05</td>
</tr>
</tbody>
</table>

a All data are presented as mean ± SD.
b FBG: fasting blood glucose.
c Decreased ratio = (value of pretreatment − value of posttreatment)/value of pretreatment.
d Data are presented as mean ± SD (standard deviation). Student’s t-test was used for statistical analysis between pretreatment and posttreatment. The P values (<0.05) are considered statistically significant.
e Diabetic patients only consumed BP supplement. The number (n) of volunteers is indicated.
f Diabetic patients consumed antidiabetic drugs and BP supplement (combination therapy). These antidiabetic drugs included metformin (Glucophage) dominantly and acarbose (Glucobay), glibenclamide (Euglucon), glimepiride (Amaryl), and insulin (NovoMix 30 or NPH human insulin/Humulin).
Table 2: Selected biochemical parameters of healthy volunteers after administration with the *B. pilosa* formulation for 3 months.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>HbA1c (%)</th>
<th>FBG (mg/dL)</th>
<th>PBG (mg/dL)</th>
<th>Fasting insulin (mU/L)</th>
<th>Postprandial insulin (mU/L)</th>
<th>TRIG (mg/dL)</th>
<th>TC (mg/dL)</th>
<th>HDL-c (mg/dL)</th>
<th>LDL-c (mg/dL)</th>
<th>AST (U/L)</th>
<th>ALT (U/L)</th>
<th>BUN (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreatment (n = 7)</td>
<td>5.4 ± 0.3</td>
<td>87.6 ± 2.3</td>
<td>111.6 ± 25.7</td>
<td>3.4 ± 1.4</td>
<td>12.5 ± 10.2</td>
<td>85.1 ± 36.0</td>
<td>168.4 ± 27.3</td>
<td>55.8 ± 10.6</td>
<td>86.4 ± 21.1</td>
<td>21.1 ± 7</td>
<td>15.7 ± 4.9</td>
<td>13 ± 3.1</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>Posttreatment (n = 7)</td>
<td>5.4 ± 0.3</td>
<td>90 ± 6.2</td>
<td>115.1 ± 31.3</td>
<td>4.9 ± 7.7</td>
<td>23.5 ± 16.4</td>
<td>71.6 ± 24.5</td>
<td>161.1 ± 20.9</td>
<td>53.3 ± 7</td>
<td>86.4 ± 19.5</td>
<td>17 ± 2</td>
<td>13.6 ± 3.6</td>
<td>13.4 ± 2.8</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>P value</td>
<td>0.86</td>
<td>0.35</td>
<td>0.82</td>
<td>0.62</td>
<td>0.16</td>
<td>0.43</td>
<td>0.58</td>
<td>0.61</td>
<td>1</td>
<td>0.16</td>
<td>0.36</td>
<td>0.8</td>
<td>0.83</td>
</tr>
</tbody>
</table>

a Data from seven healthy volunteers are presented as mean ± SD (standard deviation). The number *(n)* of volunteers is indicated.

b Student's *t*-test is used to compare the parameters before and after the volunteers took the *B. pilosa* formulation at a daily dose of 400 mg per person, *ter in die*. No statistical significance is found.
3.2. B. pilosa Formulation Had No Obvious Side Effects. Next, we assessed the 90-day safety of the B. pilosa formulation in 7 diabetes-free volunteers. We found that 90-day administration with the B. pilosa formulation showed no obvious adverse effects (Table 2). In addition, heavy metals (As, Pb, Cd, and Hg) and 251 pesticides in the B. pilosa formulation used in the study were determined and their concentrations are below the limit of detection (Figure 1 and Sup. Table 1). The Food and Agricultural Organization of the United Nations recognizes B. pilosa as a staple food [11]. The Ministry of Health and Welfare in Taiwan also allows its use as an ingredient in food for human consumption. Previous studies by our group and others found no toxicity of B. pilosa in mouse models [5, 6] and rats [12]. However, comprehensive scientific study of the safety of B. pilosa has not been conducted. In this work, clinical data suggest that B. pilosa at 400 mg, ter indie, has no noticeable toxicity (Table 2). Large-scale clinical trials on the efficacy and toxicology of B. pilosa in humans are required prior to its further medical use.

In summary, our clinical data demonstrated that the B. pilosa formulation had an antidiabetic action and no obvious side effects in humans. This action involves the regulation of β-cells.

Abbreviations

- HbA1c: Glycosylated hemoglobin A1c
- FBG: Fasting blood glucose
- TRIG: Triglycerides
- TC: Total cholesterol
- HDL: High density lipoprotein
- LDL: Low density lipoprotein
- AST: Aspartate aminotransferase
- ALT: Alanine aminotransferase
- BUN: Blood urine nitrogen

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

The authors thank Dr. W. C. Yang for his constructive suggestions and Ms. Miranda Loney for her paper editing.

References
