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1 Introduction

The future is neither completely knowable nor totally obscure; it is full of uncer-

tainty. In our daily life we make forecasts from time to time, either implicitly or

explicitly, and rely on these forecasts to make our decisions. We usually believe

that the better the forecasts, the better will be the decisions.

There are numerous forecasting methods for different problems. We are pri-

marily interested in the methods that can be justified scientifically. The behavior

of a variable usually consists of a systematic component and an idiosyncratic com-

ponent. The systematic part is characterized by a suitably constructed model from

which forecasts can be obtained. A forecasting model is operational provided that

it utilizes only the past information to generate forecasts. Owing to the presence

of the idiosyncratic component, the resulting forecasts are not perfect in general.

A variable without the systematic component can not be forecasted in a coherent

manner. While we are learning different forecasting methods, we should keep in

mind that these methods, more or less, have their own limitations.

1.1 Asset Returns

Instead of prices, asset returns are the objects of interest in financial studies. Two

main reasons are raised by Campbell, Lo, and MacKinlay (1997). First, for general

investors, return of an asset is a complete and scale-free summary of the investment

opportunity. Second, asset prices are commonly observed empirically to be nonsta-

tionary which makes the statistical analysis difficult. There are several definitions

of asset returns.

Let Pt be the price of an asset at time t. For the time being, no dividend being

pad for the asset is assumed.

1. One-period Simple Returns: holding the asset for one period from date t−1to
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t

(a) Simple Gross Return:

1 +Rt,1 =
Pt

Pt−1

.

(b) Simple Net Returns (Simple Return):

Rt,1 =
Pt

Pt−1

− 1 =
Pt − Pt−1

Pt

.

2. Multiperiod Simple Return: holding the asset for one period from date t−kto

t, the k-period simple gross return (or called a compound return) is

1 +Rt,k =
Pt

Pt−k

=
Pt

Pt−1

×
Pt−1

Pt−2

× · · · ×
Pt−k+1

Pt−k

= (1 +Rt,1)(1 +Rt−1,1) · · · (1 +Rt−k,1)

=
k−1∏
j=0

(1 +Rt−j,1),

and the k-period simple net return is

Rt,k =
Pt − Pt−k

Pt−k

.

3. Continuous Compounding Return: The effect of compounding can be illus-

trated with Table 1.1 in Tsay (2002):

Type Number of payments Interest rate per period Net value

Annual 1 0.1 $1.10000

Semiannual 2 0.05 $1.10250

Quarterly 4 0.025 $1.10381

Monthly 12 0.0083 $1.10471

Weekly 52 0.1/52 $1.10506

Daily 365 0.1/365 $1.10516

Continuous ∞ $1.10517
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Above table summarizes the net values of a bank deposit $1.00 with 10 %

interest rate per annum for different times of interest payment in an year.

For example, if the bank pays interest semi-annually, the 6-month interest

rate is 0.1/2 = 0.05 and the net value is $1.0(1 + 0.05)2 = $1.1025 after

the first year. In general, if the bank pays interest m times a year, then

the interest rate of each payment is 0.1/m and the net value of the deposit

becomes $1(1+0.1/m)m one year later. As m → ∞, (1+0.1/m)m = exp(0.1)

which is referred to as the continuous compounding.

In general, the net asset value A of continuous compounding is

A = C exp(r × n),

where r is the interest rate per annum, C is the initial capital, and n is the

number of years. Then

C = A exp(−r × n)

is referred to as the present value of an asset that is worth A dollars n years

from now.

The natural logarithm of the simple gross return of an asset is called the

continuously compounded return or log return:

rt,1 = ln(1 +Rt,1) = ln
Pt

Pt−1

= lnPt − lnPt−1

= pt − pt−1.

As to the multiperiod returns, we have

rt,k = ln(1 +Rt,k) = ln[(1 +Rt,1)(1 +Rt−1,1) · · · (1 +Rt−k,1)]

= ln(1 +Rt,1) + ln(1 +Rt−1,1) + · · ·+ ln(1 +Rt−k,1)

= rt,1 + rt−1,1 + · · ·+ rt−k,1.
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4. Portfolio Return: The simple net return of a portfolio consisting of N assets

is a weighted average of the simple net returns of the assets involved, Rp,t =∑N
i=1wiRit. The weights are usually determined by the percentages of trading

values (value weighted portfolio) and/or trading volumes (volume weighted

portfolio) of the assets among total assets.

5. Dividend Payment: Suppose an asset pays dividend (Dt), periodically. The

simple net return and continuously compound return at time t are

Rt =
Pt +Dt

Pt−1

, rt = ln(Pt +Dt)− ln(Pt−1).

6. Excess Return: The excess return of an asset at time t is defined as the

difference between it return and the return on some reference asset.

1.2 Distributional Properties of Returns

Consider a collection of N assets held for T periods. For each asset i, let rit be

the log return at time t. The log returns under study are {rit; i = 1, . . . , N ; t =

1, . . . , T}. The most general model for the log returns is their joint distribution

function:

Fr(r11, . . . , rN1; r12, . . . , rN2; . . . ; r1T , . . . , rNT |Y , θ),

where Y is a state vector consisting of variables that summarize the environment

in which asset returns are determined and θ is a vector of parameters that uniquely

determine the distributional function Fr(·). The probability distribution Fr(·) gov-

erns the stochastic behavior of the return rit and Y . In many financial studies,

the state vector Y is treated as given and the main concern is the conditional

distribution of {rit} given Y .
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Some financial theories such as CAPM focus on the joint distribution of N

returns at a single time index t, i.e., {r1t, r2t, . . . , rNt}. Other theories emphasize the

dynamic structure of individual asset returns, i.e., {ri1, . . . , riT}. In the univariate

time series analysis, our main concern is the joint distribution of {rit}Tt=1 for asset

i. The joint distribution of {rit}Tt=1 can be partitioned as

F (ri1, . . . , riT ; θ)

= F (ri1; θ)F (ri2|ri1; θ)F (ri3|ri1, ri2; θ) · · ·F (riT |ri1, · · · , ri,T−1; θ)

= F (ri1; θ)
T∏
t=2

F (rit|ri,t−1, . . . , ri1; θ).

This partition highlights the temporal dependence of the log return rit. The

main issue then is the specification of the conditional distribution F (rit|ri,t−1, . . . , ri1)

– in particular, how the conditional distribution evolves over time. The partition

can also be represented in density functions:

f(ri1, . . . , riT ; θ) = f(ri1; θ)
T∏
t=2

f(rit|ri,t−1, . . . , ri1; θ).

Several statistical distributions have been proposed in the literature for the

marginal distributions of asset returns, including normal, lognormal, stable, and

scale-mixture of normal distributions.

1. Normal Distribution: {Rit|t = 1, . . . , T} have been assumed as be indepen-

dent and identically distributed as normal with fixed mean and variance.

Drawbacks of this assumption are as follows. First, Rit has lower bound -1

however there is no bound for realizations of a normal distribution. Second,

the multiperiod simple return Rit[k] will not be normally distributed even Rit

is normally distributed. Third, the normality assumption is not supported

by most empirical empirical asset returns.

2. Lognormal Distribution: The log returns rt of an asset is commonly assumed

to be i.i.d. normally distributed with mean µ and variance σ2. The simple
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returns are then i.i.d. lognormal distributed with

E(Rt) = exp

(
µ+

σ2

2

)
− 1, var(Rt) = exp(2µ+ σ2)[exp(σ2)− 1].

Alternatively, let m1 and m2 be the mean and variance of the simple return

Rt, which is lognormally distributed. The the mean and variance of the

corresponding log return rt are

E(rt) = ln

 m1 + 1√
1 + m2

(1+m1)2

 , var(rt) = ln

[
1 +

m2

(1 +m1)
2

]
.

As the log return rt are i.i.d. normal, the multiperiod of log return rt[k] is

also normally distributed. In addition, there is no lower bound for rt, and

the lower bound for Rt is satisfied using 1 + Rt = exp(rt). However, the

lognormal assumption is not supported by the exhibition of a positive excess

kurtosis in most asset returns.

3. Stable Distribution: rt is stable iff its characteristic function h can be ex-

pressed as h = eg, where g has one of the following forms: For 0 < α < 1 or

1 < α ≤ 2,

g(u) = iuδ − d|u|α
(
1 + iβ

u

|u|
tan(

π

2
α)

)
, (1)

and for α = 1,

g(u) = iuδ − d|u|
(
1 + iβ

u

|u|
2

π
ln |u|

)
, (2)

where δ ∈ R, d ≥ 0, |β| ≤ 1, and take u/|u| = 0 when u = 0. Usually,

equations (1) and (2) are called the characteristic function of the family of

stable Paretian distribution. The parameter δ is a location parameter, d a

scale parameter, β is a measure of of skewness, and α is the characteristic
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exponent. The characteristic exponent, α, determines the total probability

in the extreme tails. The smaller the value of α, the thicker the tails of

the distribution (Famma, 1963). The general form of the symmetric stable

characteristic function located at zero, i.e., δ = 0, β = 0, is

h(u) = exp[−d|u|α], d ≥ 0, 0 < α ≤ 2.

When α = 2, rt is normal (0, 2d); when α = 1, rt has the Cauchy density

with parameter d.

If rt is stable (not necessary symmetric) and 0 < α ≤ 1, then h is not

differentiable at u = 0, so E(|rt|) = ∞. In the symmetric case, E(rt) does

not exist. If 1 < α < 2, h can be differentiated once but not twice at u = 0, so

that E(r2t ) = ∞. This is to be expected, for if rt has finite mean and variance,

the fact that rt can be obtained as a limit of a sequence of normalized sums

implies that rt must be normal. It can be shown that if rt is stable, rt has a

finite rth moment for all r ∈ (0, α).

It is known that a normal random variable is a stable random variable with

α = 2, while a Cauchy is a stable random variable with α = 1. Ash (1972, pp

345–346) pointed out that the normalized sum of i.i.d. Cauchy (special stable

distribution with α = 1) random variables has a limit which is also a Cauchy

distribution. Moreover, the normalized sum of stable random variables has

the same stable distribution as its limit. That means, the normalized sums of

stable random variables will not follow the central limit theorem so that the

functional central limit theorem breaks down. Due to its heavy dependence on

the results of functional central limit theorem, the conventional large sample

tests will be problematic in models with stable distributed errors.

4. Scale Mixture of Normal Distributions: An example of finite mixture of nor-
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mal distributions is

rt ∼ (1− α)N(µ, σ2
1) + αN(µ, σ2

2),

where 0 ≤ α ≤ 1, σ2
1 is small and σ2

2

1.2.1 Likelihood Function of Returns

Suppose the conditional distribution f(rt|rt−1, . . . , r1; θ) (the subscript i is omitted)

is normal with mean µt and variance σ2
t , then θ consists of the parameters in µt

and σ2
t and the likelihood function of the data is

f(r1, . . . , rT ;θ) = f(r1;θ)
T∏
t=2

1√
2πσt

exp

[
−(rt − µt)

2

2σ2
t

]
,

and the log likelihood function is

ln f(r1, . . . , rT ;θ) = ln f(r1;θ)−
1

2

T∑
t=2

[
ln(2π) + ln(σ2

t ) +
(rt − µt)

2

σ2
t

]
.

1.2.2 Empirical Properties of Returns

1. Daily returns of the market indexes and individual stocks tend to have higher

excess kurtoses than monthly returns. For monthly series, the returns of

market indexes have higher excess kurtoses than individual stocks.

2. The mean of a daily return series is close to zero, whereas that of a monthly

return series is slightly higher.

3. Monthly returns have higher standard deviations than daily returns.

4. Among the daily returns, market indexes have smaller standard deviations

than individual stocks.
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5. The skewness is not a serious problem for both daily and monthly returns.

6. The descriptive statistics show that the difference between simple and log

returns is not substantial.

7. The empirical density function has a higher peak around it mean, but fatter

tails than that of the corresponding normal distribution. In other words, the

empirical density function is taller, skinner, but with a wider support than

the corresponding normal density.

1.3 Components of a Time Series

As mentioned previously, a time series may be divided into a systematic component

(a deterministic part and a stochastic part) and an idiosyncratic component. The

deterministic part of the systematic component could be a deterministic function of

time trend (including business cycle and time trend) and seasonality. The stochastic

component consists of autoregressive and moving average elements. Furthermore,

time-varying variance may also be an element of the stochastic component. To

summary, a time series, yt, can be represented as

yt = {systematic component}+ {idiosyncratic component}

= {[deterministic part] + stochastic part}+ {idiosyncratic component}

= {[business cycle + time trend] + seasonality}+ {idiosyncratic component}

= {[f(t)] + g(st) + ARMA(p, q)}+
√

htet.

The aim of conventional time series analysis is to explore the functional forms

of f(t), g(st), ht and the orders of p and q. Tools of discovering f(t), g(st), ht

and p and q include the regression analysis, smoothing techniques, and the method

of Box-Jenkins. For examples, f(t) can be formulated as a linear (α0 + α1t) or

quadratic (α0 + α1t+ α2t
2) function and g(st) be modeled as γ1st1 + γ2st2 + γ3st3
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for quarterly time series, where sti, i = 1, 2, 3 are the seasonal dummy variables.

As to the Box-Jenkins method, we will have complete discussion lately.

1.4 Time Series Smoothing

Smoothing techniques are ways of discovering time trend pattern of a time series.

In other words, Smoothing techniques remove the jagged path of a time series.

1.4.1 Smoothing via Moving Averages

A time series usually exhibits a rather jagged time path so that its underlying reg-

ularities may be difficult to identify. To get a clearer picture of a time series, it is

important to smooth its time path. A simple way of smoothing is to compute mov-

ing averages of the original series. Let yt, t = 1, . . . , T , be time series observations.

The simple moving average with m periods is

y∗t =
yt−m+1 + · · ·+ yt−1 + yt

m
, t = m, . . . , T.

In technical analysis, y∗t is usually taken as the 1-step ahead forecasting of yt+1 at

time t. The 1-step ahead forecast error is defined as et = yt+1 − y∗t . Observe that

y∗t =
yt−m+1 + · · ·+ yt−1 + yt

m

y∗t−1 =
yt−m + · · ·+ yt−2 + yt−1

m

we have

y∗t − y∗t−1 =
yt − yt−m

m

y∗t = y∗t−1 +
yt − yt−m

m
.

This updating scheme makes the forecasting process much easier.

Notes:
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1. Moving average is an easy and efficient way to understand and forecast the

time path.

2. The drawback of using moving average is its inability to capture the peaks

and troughs of the time series.

3. Under-prediction is obtained for data moving up persistently and over-prediction

is for data moving down persistently.

4. The moving average is fail to deal with nonstationary time series.

5. Seasonality is eliminated by the moving average method.

6. Equal weight are given to all the data.

1.4.2 Simple Exponential Smoothing

A different approach of smoothing a time series is the so-called exponential smooth-

ing . There are several exponential smoothing algorithms, each is constructed ac-

cording to intuition, past experience, and certain characteristics of the time series

under study. It is worth noting that this approach does not require fitting of a

particular model.

We first discuss simple exponential smoothing which assigns a weight to the

current observation yt and exponentially decaying weights to previous observations

as:

y∗t = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + α(1− α)3yt−3 + · · ·

= α
∞∑
j=0

(1− α)jyt−j,

where 0 < α < 1 is a smoothing constant to be determined by practitioners. As

α
∞∑
j=0

(1− α)j = 1,
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y∗t is a weighted average (linear combination) of current and past yt and can be

interpreted as an “estimate” of the current level of yt. It is also easy to verify that

y∗t can be computed via the following simple algorithm:

y∗t = αyt + (1− α)y∗t−1,

so that y∗t is a linear combination of yt and previously smoothed y∗t−1. This algo-

rithm typically starts with y∗1 = y1. We do not discuss other choices of initial value

because their effect on forecasts eventually vanish when t becomes large.

A drawback of simple exponential smoothing is that it yields constant forecasts

for all future values. To see this, the forecast of yt+2 at t+ 1 is

yt+2|t+1 = y∗t+1 = αyt+1 + (1− α)y∗t .

To make a 2-step ahead forecast, we may replace yt+1 by its forecast y∗t and obtain

yt+2|t = yt+2|t+1|t

= [αyt+1 + (1− α)y∗t ]|t

= αyt+1|t + (1− α)y∗t

= αy∗t + (1− α)y∗t = y∗t .

Following the same line we find that the h-step ahead forecasts are yt+h|t = yt,

h = 1, 2, . . .. Homework! The error-correction form of the simple exponential

smoothing algorithm is:

y∗t = α(y∗t−1 + et) + (1− α)y∗t−1 = y∗t−1 + αet.

This expression shows that positive (negative) forecast errors result in upward

(downward) adjustments.

Another difficult problem associated with the simple exponential smoothing al-

gorithm is the choice of smoothing constant α. An analyst may choose a smoothing

12



constant subjectively based on his/her experience with similar time series. When

the behavior of a time series is rather erratic so that an observation may contain

a large irregular component, one would tend to adopt a smaller smoothing con-

stant which gives less weight to the most recent observation but more weight to

the previously smoothed estimate. For a smoother time series, a larger smoothing

constant is then needed to give more weight to the most recent observation. This

method relies on visual inspection of the time series; the exact weight to be as-

signed is determined quite arbitrarily. An objective way to determine a smoothing

constant is the method of grid search. By selecting a grid of values for smoothing

constant, we can compute sequences of smoothed series y∗t (α) and their one-step

forecast errors et(α). The “optimal” smoothing constant is the α for which the

sum of squared one-step forecast errors,
∑T

t=3 et(α)
2, is the smallest. Clearly, the

effectiveness of this method depends on the choice of the grid.

Eviews demonstration

1.4.3 Holt’s Linear Trend Algorithm

Writing yt = yt−1 + (yt − yt−1), a better estimate of yt may then be obtained by

combining estimates of the level and change in level (local trend) of the underlying

series. This motivates Holt’s linear trend algorithm:

y∗t = αyt + (1− α)(y∗t−1 + τt−1),

τt = β(yt − y∗t−1) + (1− β)τt−1,

where both α and β are smoothing constants between zero and one. This algorithm

typically starts with y∗2 = y2 and τ2 = y2 − y1. The algorithm can be expressed

explicitly as

y∗2 = y2,

τ2 = y2 − y1,
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y∗3 = αy3 + (1− α)(y∗2 + τ2),

τ3 = β(y3 − y∗2) + (1− β)τ2,

... =
...

y∗T = αyT + (1− α)(y∗T−1 + τT−1),

τT = β(yT − y∗T−1) + (1− β)τT−1.

The forecast of yt+1, yt+1|t, is based on the current estimates of level and change

in level, i.e., yt+1|t = y∗t + τt. Hence,

yt+2|t+1 = y∗t+1 + τt+1 = αyt+1 + (1− α)(y∗t + τt) + τt+1.

The 2-step ahead forecast is derived as:

yt+2|t = yt+2|t+1|t

= {[y∗t+1 + τt+1]|t}

= {αyt+1 + (1− α)(y∗t + τt) + τt+1|t}

= αyt+1|t + (1− α)(y∗t|t + τt|t) + τt+1|t

= αyt+1|t + (1− α)(y∗t + τt) + τt

= α(y∗t + τt) + (1− α)(y∗t + τt) + τt

= y∗t + 2τt.

Similarly, the h-step ahead forecasts can be written as yt+h|t = y∗t + hτt, h =

1, 2, . . .. Homework!!!

In contrast with simple exponential smoothing, Holt’s algorithm yields non-

constant forecasts, but its projected future values grow (decline) by a fixed amount.

Let et = yt − y∗t−1 − τt−1 be the one-step forecast error. The error-correction

form of Holt’s algorithm becomes

y∗t = α(y∗t−1 + τt−1 + et) + (1− α)(y∗t−1 + τt−1) = y∗t−1 + τt−1 + αet,

τt = β(y∗t − y∗t−1) + (1− β)τt−1 = τt−1 + αβet.
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Note that previous forecast errors affect both the estimates of level and local trend

and that the adjustment of τt depends on α and β simultaneously.

To choose appropriate smoothing constants, we may still employ a grid search

of pairs of values (α, β) to find the one minimizing the sum of squared one-step

forecast errors. This method now must search for the best combination of two

smoothing constants, and hence is computationally more demanding than for the

simple exponential smoothing algorithm.

1.4.4 The Holt-Winter Algorithm

To allow for seasonality, we consider an extension of Holt’s algorithm, which are

known as the Holt-Winters algorithm. In particular, we consider both additive and

multiplicative seasonality.

Let φ denote the seasonal factor and s its number of periods per year. Given

additive seasonality, the Holt-Winters algorithm is

y∗t = α(yt − φt−s) + (1− α)(y∗t−1 + τt−1),

τt = β(y∗t − y∗t−1) + (1− β)τt−1,

φt = γ(yt − y∗t ) + (1− γ)φt−s,

where α, β, and γ are smoothing constants between zero and one. The first two

equations are analogous to Holt’s linear trend algorithm, except that the original

series is first adjusted by subtracting the latest estimate of the seasonal factor φt−s.

From the last equation we can see that a factor φt will not be used for updating

until another s periods have elapsed. The initial values of this algorithm may be

computed as: τs = 0, y∗s = (y1 + y2 + · · ·+ ys)/s, and φi = yi − y∗s , i = 1, . . . , s.
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It should be clear that, owing to additive seasonality, the forecasts of yt+h are

yt+h|t =



y∗t + hτt + φt+h−s, h = 1, . . . , s,

y∗t + hτt + φt+h−2s, h = s+ 1, . . . , 2s,

y∗t + hτt + φt+h−3s, h = 2s+ 1, . . . , 3s,

...
...

Note that each seasonal factor repeats every s periods. Let et = yt − y∗t−1 − τt−1 −

φt−s be the one-step forecast error. The error-correction form of the Holt-Winter

algorithm becomes:

y∗t = α(y∗t−1 + τt−1 + et) + (1− α)(y∗t−1 + τt−1) = y∗t−1 + τt−1 + αet,

τt = β(y∗t − y∗t−1) + (1− β)τt−1 = τt−1 + αβet,

φt = γ(yt − y∗t ) + (1− γ)φt−s, = φt−s + γ(1− α)et.

Observe that the first two equations are the same as those of the Holt’s algorithm,

and the adjustment of φt also depends on α.

Similarly, given multiplicative seasonality, the Holt-Winters algorithm is:

y∗t = α(yt/φt−s) + (1− α)(y∗t−1 + τt−1),

τt = β(y∗t − y∗t−1) + (1− β)τt−1,

φt = γ(yt/y
∗
t ) + (1− γ)φt−s.

The initial values y∗s and τs are the same as those for additive seasonality, and the

initial values for seasonal factor are φi = yi/y
∗
s , i = 1, . . . , s. The h-step ahead

forecasts are:

yt+h|t =



(y∗t + hτt)φt+h−s, h = 1, . . . , s,

(y∗t + hτt)φt+h−2s, h = s+ 1, . . . , 2s,

(y∗t + hτt)φt+h−3s, h = 2s+ 1, . . . , 3s,

...
...
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Let et = yt − (y∗t−1 − τt−1)φt−s. The error-correction form is:

y∗t = y∗t−1 + τt−1 + α(et/φt−s),

τt = τt−1 + αβ(et/φt−s),

φt = φt−s + γ(1− α)(et/y
∗
t ).

Although a grid search of appropriate smoothing constants is still plausible, it

involves triples of values (α, β, γ) and is much more difficult to implement.

1.4.5 Other Exponential Smoothing Algorithms

A linear trend is not the only way to describe change in level of a time series. In this

section we consider two other types of the trend component: damped trend and

exponential trend. We describe only the algorithms for non-seasonal time series;

their variants allowing for seasonality can be found in Newbold & Bos (1994).

In contrast with Holt’s algorithm which predicts continuing growth, it may be

more reasonable in some applications to predict that the growth of a time series

eventually dies out. For example, given an estimated local trend τt, the predicted

local trends may evolve as cτt at time t+1, c2τt at t+2, and so on, where 0 < c ≤ 1 is

the damping factor . The larger the damping factor, the slower the predicted trend

diminishes. This leads to the damped trend algorithm:

y∗t = αyt + (1− α)(y∗t−1 + cτt−1),

τt = β(y∗t − y∗t−1) + (1− β)cτt−1,

and the h-step forecasts are:

yt+h|t = y∗t +

(
h∑

j=1

cj

)
τt, h = 1, 2, . . .

Let et = yt − y∗t−1 − cτt−1. The error-correction form of this algorithm is:

y∗t = y∗t−1 + cτt−1 + αet,

τt = cτt−1 + αβet.
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Clearly, for c = 1, this algorithm simply reduces to Holt’s algorithm.

In some other applications one may predict that future levels grow or decline

exponentially over time. For notational simplicity, we now let τt denote growth

rate, rather than local trend. The exponential trend algorithm is:

y∗t = αyt + (1− α)y∗t−1τt−1,

τt = β(y∗t /y
∗
t−1) + (1− β)τt−1,

and the h-step forecasts are:

yt+h|t = y∗t τ
h
t , h = 1, 2, . . .

If there is a growth, i.e., τt > 1, the predicted future values will increase exponen-

tially with a constant growth rate. Let et = yt − y∗t−1τt−1. The error-correction

form of this algorithm is:

y∗t = y∗t−1τt−1 + αet,

τt = τt−1 + αβ(et/y
∗
t−1).
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