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Abstract—In the last two decades, many online fault/noise
injection algorithms have been developed to attain a fault tolerant
neural network. However, not much theoretical works related to
their convergence and objective functions have been reported.
This paper studies six common fault/noise-injection-based online
learning algorithms for radial basis function (RBF) networks,
namely 1) injecting additive input noise, 2) injecting additive/mul-
tiplicative weight noise, 3) injecting multiplicative node noise, 4)
injecting multiweight fault (random disconnection of weights), 5)
injecting multinode fault during training, and 6) weight decay with
injecting multinode fault. Based on the Gladyshev theorem, we
show that the convergence of these six online algorithms is almost
sure. Moreover, their true objective functions being minimized
are derived. For injecting additive input noise during training,
the objective function is identical to that of the Tikhonov regular-
izer approach. For injecting additive/multiplicative weight noise
during training, the objective function is the simple mean square
training error. Thus, injecting additive/multiplicative weight noise
during training cannot improve the fault tolerance of an RBF
network. Similar to injective additive input noise, the objective
functions of other fault/noise-injection-based online algorithms
contain a mean square error term and a specialized regularization
term.

Index Terms—Convergence, gladyshev theorem, fault tolerance,
objective functions, RBF Networks.

I. INTRODUCTION

R EGULARIZATION [28], [31], [32], [43] and pruning
[18], [24], [26], [27], [36], [39] are common techniques

to attain a neural network with good generalization. These
techniques work well under the assumption that neural net-
works after training can be ideally implemented (i.e., fault-free
implementation). However, in electronic implementations
(like field-programmable gate array (FPGA) [19]), component
failure, sign bit change, open circuit [38], finite precision [41],
and exposure to radiation [48] will exist. If special care is not
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considered, the performance of a neural network could degrade
drastically.

There are various methods aiming at attaining a fault tol-
erant neural network. Some of these methods include injecting
random node fault (stuck-at-zero fault, for instance) during
training [7], [42], applying weight decay learning [29], [12], in-
jecting weight noise during training [14], [33], [34], introducing
network redundancy [38], formulating the training algorithm
as a nonlinear constraint optimization problem [13], [35],
hard-bounding weight magnitude during training [10], [17],
[22], and regularization [2], [4], [5], [25], [45]. Readers may
refer to [11], [37], and [47] for a summary of those techniques.

Among those methods, injecting fault or noise during training
is a simple and yet effective method to improve the fault tol-
erance and generalization [11], [31], [34], [37], [49]. Sequin
and Clay [42] and Bolt [7] are pioneers who proposed injecting
random node fault during training for improving the fault tol-
erance of multilayer perceptron (MLPs). Murray and Edward
[33], [34] proposed injecting weight noise during training. They
experimentally showed that a resultant MLP is able to tolerate
weight fault and multiplicative weight noise, and that the con-
vergence of training is improved. Jim et al. [21] applied the sim-
ilar idea for recurrent neural networks (RNNs) with real-time re-
current learning (RTRL). Apart from the concept of node fault
or weight noise injection, injecting input noise during training
is another approach [6], [30], [20], in which random noise is in-
jected to the input of a network during training.

Although many online fault/noise injection learning al-
gorithms have been developed, not many theoretical works
have been investigated. Most of them focused on the output
sensitivity or the prediction error of a trained neural network.
Analysis on the convergence of these online fault/noise in-
jection learning algorithms is scarce. Many researchers have
claimed that training with noise is equivalent to the Tikhonov
regularization [1], [6], [16], [40]. In fact, they only showed that,
when the input of a well-trained neural network is corrupted by
additive noise, its prediction error is equivalent to mean square
error plus a Tikhonov regularizer. For the case of injecting
weight noise, similar result has been obtained in [1], [3]–[5],
and [45]. That is, if weights of a well-trained network are
corrupted by weight noise, its prediction error is equivalent to
mean square error plus a regularizer. Here, we should point
out that the prediction error of a neural network being injected
by noise is different from the objective function of a noise
injection learning algorithm. The former one does not need the
information regarding to the learning algorithm. The latter one
requires to consider learning algorithm.
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An [1] presented the objective functions for the online back-
propagation training with additive weight noise injection (see
[1, Sec. 4]), in which the noise is defined as either a mean zero
Gaussian noise or a mean zero uniform noise. However, An’s ap-
proach is based on the derivation of the prediction error. Even
though An applied a theorem from stochastic gradient descent
[8], [9], the proof on the convergence of the online weight noise
injection learning has not been accomplished. We will show later
in this paper that a penalty term [1, eq. (4.7)] derived by An for
weight noise injection during training is not totally correct.

As analysis on the objective functions and convergence of
those online noise/fault injection learning is far from complete,
further investigation along this line is inevitable. The goals of
this paper are: 1) to prove convergence of fault/noise-injection-
based online learning algorithms for radial basis function (RBF)
networks, 2) to derive their corresponding objective functions,
and 3) to elucidate the differences and similarities among noise-
injection-based learning algorithms and other online learning
algorithms. This paper will investigate the following six fault/
noise-injection-based online learning algorithms:

A) injecting additive input noise [6];
B) injecting additive/multiplicative weight noise [34];
C) injecting multiplicative node noise;
D) injecting multiweight fault [46];
E) injecting multinode fault [42];
F) weight decay with injecting multinode fault [12].
Instead of considering the prediction error of a trained net-

work, we investigate the properties of the update equations of
these six algorithms. Their update equations can be summarized
into one general equation, given by

(1)

where , and are the estimated weight vector, a
randomly selected training data, and a random vector control-
ling the fault/noise at time step, respectively. The parameter

is the step size and the vector function is the up-
date function. Each of those six algorithms has its own update
function.

In this paper, the expected solution for which converges
will first be deduced. Afterwards, the convergence of with
probability one is proved by applying the Gladyshev theorem
[15]. Subsequently, the corresponding objective function being
minimized is devised. Notice that Algorithm C is newly pro-
posed in this paper. It will be shown later that injecting multi-
plicative node noise is able to improve the fault tolerance ability
of an RBF network. However, injecting multiplicative weight
noise during training is not able to do so.

The paper is organized as follows. In Section II, the definition
of an RBF network and fault/noise models are first introduced.
Afterwards, the six fault/noise-injection-based online algorithms
are mathematically defined. In Section III, we will prove that all
the six fault/noise-injection-based algorithms can converge with
probability one. Their convergence properties together with their
objective functions will be given. Owing to highlighting of the
similarities among the objective functions explored in this paper
and those objective functions developed by other researchers, we

will also give some comments on those six algorithms. The rela-
tionship between injecting fault to regularization-based learning
algorithms is elucidated in Section IV. Finally, concluding re-
marks and possible future works are given in Section V.

II. FAULT/NOISE-INJECTION-BASED LEARNING

Let be a set of measurement data ob-
tained from an unknown system of the following form :

(2)

where is the input, is the output, and is a
mean zero Gaussian noise with finite variance. We assume that
the nonlinear function can be realized by an RBF network
with RBF nodes, given by

(3)

The basis functions ’s are given by

(4)

where is the center of the th basis function, and
is the width of basis functions.

In this paper, we consider that ’s and are fixed. Hence, an
RBF network can be regarded as a linear model and (3) can be
rewritten in vector form as follows:

(5)

where and
. In the online least mean square (LMS)

learning, the update equation is given by

(6)

where (for ) is the step size at time .

A. Additive Input Noise Injection Training

In the case of injecting additive input noise, the update equa-
tion is given by

(7)

where is a noise version of the input vector, given by

(8)

In (7) and (8), , and ’s are indepen-
dently identical zero mean Gaussian noise with variance equal
to .

B. Additive/Multiplicative Weight Noise Injection Training

While an RBF network is trained by the idea of weight noise
injection, the update equation is given by

(9)

where the th element of is given by

for additive noise
for multiplicative noise. (10)
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C. Multiplicative Node Noise Injection

In the case of injecting multiplicative node noise, the update
equation is given by

(11)

where , and

D. Multiweight Fault Injection Training

In the case of injecting multiweight fault, we have

(12)

where , and
’s are independent binary random variables with probability,

given by

if
if

(13)

E. Multinode Fault Injection Training

While an RBF network is trained by multinode fault injection,
the update equation is

(14)

where , and
.

F. Weight Decay-Based Multinode Fault Injection Training

The case of weight decay-based multinode fault injection
training is similar to that of simple multinode fault injection,
except that a decay term is added. The update equation is

(15)

III. MAIN RESULTS

Theory of stochastic approximation has been developed for
analyzing the convergence of recursive algorithms. Advanced
theoretical works for complicated recursive algorithms are still
under investigation [23]. The theorem applied in this paper is
based on the Gladyshev theorem [15].

Consider a general form of recursive algorithms, given by

(16)

where and for all . are
independent identically distributed (i.i.d.) random vectors with
probability density function . In the fault/noise injection
algorithms, corresponds to a vector augmenting , and

(or ).
Denoting the expectation of over as

(17)

Moreover, it is assumed that has a unique solution
such that . The convergence of (16) can be proved if
the conditions stated in the following theorem can hold.

Theorem 1 (Gladyshev Theorem [15]): For a recursive algo-
rithm given by (16), suppose there exist positive constants
and such that for all the following conditions are
satisfied.

C1) and .
C2) .
C3) .
Then, for converges to with probability one.
The first condition C1) is usually satisfied because the step

size could be predefined as ( is a constant). Therefore, we
skip the proof of condition C1) in the rest of this section. To
simplify the presentation, we let

and

(18)

A. Additive Input Noise Injection

If the input noise variance is small, the following theorem
can be shown by applying the Gladyshev theorem

Theorem 2: For injecting additive input noise during training
an RBF network, the weight vector will converge with prob-
ability one to

(19)

where , and are given in (18). Besides, the corresponding
objective function to be minimized is given by

(20)

Proof: For small , in (7)

Hence, the correction term

in (7) can be rewritten as follows:

(21)
Taking expectation of (21) with respect to yields

(22)
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After we further take expectation of the above equation with
respect to and , we have , given by

(23)

Setting in (23) to a zero vector yields the solution ,
given by

(24)

Hence, for all , we have

which is less than zero. Therefore, condition C2) holds.
For condition C3), we consider that

(25)

As all the elements of are in between zero and one

(26)

(27)

In the above, we use the parallelogram law to establish the in-
equality. Note that is a matrix with eigenvalues 0
and , which is less than or equal to . Therefore

(28)

Since the right-hand side of (28) is independent of random
vector

Further taking the expectation of the above inequality with re-
spect to and , one can readily show that condition C3) is
satisfied. The convergence proof is completed. By the fact that

is the solution of

and is in quadratic
form, is unique and the objective function is given by (20).
The proof of Theorem 2 is completed.

One might notice that the objective function [see (20)] ob-
tained in Theorem 2 is the same as those derived in [1], [6], [16],
and [40] for multilayer perceptron and in [2] for RBF network.
But we take a different approach to come up with this objective
function.

B. Weight Noise Injection

Applying the Gladyshev theorem, the following theorem
can be proved for injecting multiplicative weight noise with
bounded .

Theorem 3: For injecting (additive or multiplicative) weight
noise during training an RBF network, the weight vector will
converge with probability one to

(29)

where and are given in (18). Besides, the corresponding
objective function to be minimized is given by

(30)

Proof: For an RBF network that is trained by in-
jecting multiplicative weight noise,

, where . Taking expecta-
tion of the correction term with respect
to , we have

From the expectation of the above equation with respect to
and is given by

(31)

Therefore, .
Next, we are going to apply the Gladyshev theorem for the

convergence proof. We skip the proof of condition C1) for sim-
plicity. Recall that we define and

. Hence, for all , we have

which is less than zero. Therefore, condition C2) holds.
For condition C3), we consider that

(32)

Since

where is the element multiplication operation. That means
. From the parallelogram law,

we have

(33)

Since

(34)

Therefore, one can readily show that condition C3) is satisfied
and the proof is completed.
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As the solution is identical to the solution of

and is in quadratic form, is
unique and the objective function is given by (30). The proof of
Theorem 3 is completed.

One might notice that the objective function (30) obtained
in Theorem 3 is the mean square training errors. Therefore, in-
jecting weight noise during training an RBF network should not
be able to improve its tolerance to weight noise.

C. Multiplicative Node Noise Injection

Applying the Gladyshev theorem for analyzing the proper-
ties of training an RBF network by injecting multiplicative node
noise with bounded , the following theorem can be proved.

Theorem 4: For injecting multiplicative node noise during
training an RBF network, the weight vector will converge
with probability one to

(35)

where , and are given in (18). Besides, the corre-
sponding objective function to be minimized is given by

(36)

Proof: Recall that .
Taking the expectation of with respect
to and , we have

(37)

Thus, the solution is given by

(38)

Hence, for all , we have

which is less than zero. Therefore, condition C2) holds.
For condition C3), we consider

. For any

(39)

Note that

(40)

By Lemma 1, is a nonneg-
ative symmetric matrix whose elements depend on and

. As the elements in are bounded by zero and one, the
largest eigenvalue of must be bounded. Then

(41)

By (40) and (41), the expectation of over is
bounded by the following inequality:

(42)
Further taking the expectation of the above inequality with re-
spect to and , one can readily show that condition C3) is
satisfied.

Since is the solution of

and is in the
quadratic form, is unique and the objective function is given
by (36). The proof of Theorem 4 is completed.

Note that this objective function is the same as the objec-
tive functions derived by Bernier et al. [4] and Sum et al. [45].
The following conclusion can be obtained from this objective
function. If one would like to train an RBF to tolerate antici-
pated multiplicative weight noise, multiplicative node noise (in-
stead of multiplicative weight noise) should be injected during
training.

D. Multiweight Fault Injection Training

applying the Gladyshev theorem for analyzing the properties
of training an RBF network by injecting multiweight fault (each
weight is of fault rate ), the following theorem can be proved.

Theorem 5: For injecting multiweight fault during training
an RBF network, the weight vector will converge with prob-
ability one to

(43)

where and are given in (18). Besides, the corresponding
objective function to be minimized is given by

(44)

Proof: Recall that
. Taking the expectation of the second

term with respect to and ,
we have

(45)
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From (45), the solution is given by . For
nonsingular

(46)

Hence, for all , we have

which is less than zero. Therefore, condition C2) holds.
From (12) and the parallelogram raw, we have the following

inequality:

(47)

where , and is the largest
eigenvalue of the matrix . The last inequality in (47) is due
to the fact that . Then, taking expectation of (47)
with respect to and , we can easily observe that condition
C3) holds.

Since is the solution of

and is in quadratic
form, is unique and the objective function is given by (44).
The proof of Theorem 5 is completed.

E. Multinode Fault Injection Training

Applying the Gladyshev theorem, the following theorem can
be proved for injecting multinode fault training.

Theorem 6: For injecting multinode fault during training an
RBF network, the weight vector will converge with proba-
bility one to

(48)

where , and are given in (18). Besides, the corre-
sponding objective function to be minimized is given by

(49)

Proof: To prove condition C2), we need to consider the
mean update equation . Taking expectation of the second
part of (14) with respect to and , we have

(50)

where the solution is given by

(51)

Hence, for all , we have

which is less than zero. Therefore, condition C2) holds.
For condition C3), we have

(52)

where . Since
where is equal to 1 or 0, we can easily have

, and . Besides

where ,
and . Notice that is symmetric and nonneg-
ative. So, we have

(53)

Taking expectation of the above inequality with respect to
and , one can readily show that condition C3) is satisfied.

Since is the solution of

and is in
quadratic form, is unique and the objective function is given
by (49). The proof of Theorem 6 is completed.

It is worthwhile to note that (49) is also identical to the objec-
tive function derived in [25]. In other words, injecting random
node fault during an RBF training is able to improve its ability
to tolerate anticipated multinode random fault.

F. Weight Decay-Based Multinode Fault Injection Training

For weight decay-based multinode fault injection training, we
will prove the following theorem.

Theorem 7: For injecting multinode fault during weight
decay to train an RBF network, the weight vector will
converge with probability one to

(54)

where , and are given in (18). Besides, the corre-
sponding objective function to be minimized is given by

(55)
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TABLE I
OBJECTIVE FUNCTIONS OF THE FAULT/NOISE-INJECTION-BASED ONLINE LEARNING FOR RBF

Proof: By taking the expectation of the second part of (15)
with respect to and , we have

(56)

With the about equation, the solution is given by

(57)

Hence, for all , we have

which is less than zero. Therefore, condition C2) holds. For con-
dition C3), the proof is similar to that of the injecting multinode
fault.

Then, taking expectation of the above inequality with respect
to and , one can show that condition C3) is satisfied.

By the fact that is the solution of

and
is in quadratic form, is unique and the

objective function is given by (55). The proof of Theorem 7 is
completed.

One should notice the weight decay effect is scaled up when
random node fault is injected. The larger the value is, the larger
will be the weight decay effect. With proper control on the pa-
rameter , one is able to train an RBF to tolerate anticipated
multinode random fault as well as improve generalization.

IV. NOISE-INJECTION-BASED LEARNING VERSUS

EXPLICIT REGULARIZATION

Table I summarizes the results obtained in Section III. Due
to the fact that some of these objective functions resemble the
objective functions presented recently by other approaches [4],

[45], it is necessary to explain the relations among these learning
algorithms and those developed by other approaches.

As mentioned in Section I, the objective function derived in
[1], [4], and [25] is basically the prediction error of a neural
network that is corrupted by weight noise. Let us denote it by

(58)
where is the probability density function of . If
is zero mean and its variance is equal to , we
have shown in [45] that

(59)

By applying the idea of stochastic gradient descent, we can
show that (59) is the objective function for the following on-
line learning algorithm that is proposed by Bernier et al. [4]1:

(60)

Comparing the update equation given by (60) and the expecta-
tion of (9), we can see that they are corresponding to two dif-
ferent learning algorithms. On the contrary, it is worth to note
that the update equation given by (60) and the expectation of
(11) are actually the same equation. In other words, the algo-
rithms as given by (60) and (11) are virtually the same. With
the same initial conditions, both equations will converge to the
same solution.

As a result, we can conclude the following. To obtain a single
output RBF that is able to tolerate multiplicative weight noise,
one could apply either injecting multiplicative node noise during
training based on (11) or the regularization-based learning algo-
rithm based on (60).

V. CONCLUSION

In this paper, the six fault-injection-based online training
algorithms for RBF networks have been analyzed. Their cor-
responding objective functions have been deduced and their
convergence proofs have been shown. Except for the case of
injecting weight noise, all objective functions are of similar form

mean square error regularizer

1Refer to [4, eq. (6)].
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For the case of injecting weight noise (either multiplicative or ad-
ditive) during training, the objective function is the mean square
error. Thus, we can conclude that online weight noise injection
trainingisnotable toimproveanRBFnetworktolerancetoweight
noise effect. To obtain an RBF network that is able to tolerate
multiplicative weight noise, one could inject multiplicative node
noise during training [see (11)]. Owing to the similarities among
the objective functions derived for fault/noise-injection-based al-
gorithms and those based on regularization approach, a discus-
sion on their relations is presented. While this paper focuses on
RBF networks, it is worth to mention that convergence analysis
on injecting weight noise during training an MLP is still an open
problem. In a recent study [44], the divergence of weight vector
during training has found. In such a case, theoretical analysis on
the convergence and objective function of injecting multiplica-
tive weight noise during training nonlinear neural networks will
be one of our future work.

APPENDIX

Lemma 1: Let be a random vector defined as fol-
lows:

where i) is a constant vector, ii)
(where ) is a constant matrix, iii)

is a random Gaussian vector
with mean zeros, and . The expectation of the
random matrix over the random vector

is given by

(61)

Proof: By expanding
, and taking expectation with respect to , one can obtain

that

(62)

where

and

Note that

Hence, the terms to in (62) can be obtained as follows:

(63)

(64)

(65)

(66)

(67)

(68)

The eighth term will then be given by

(69)

(70)

Therefore

(71)

Summing the results of the above seven terms [(63)–(68)] and
is clearly obtained and the proof is completed.
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