/* A first program in C */
#include <stdio.h>
int main()
{
 printf("Welcome to C!\n");
 return 0;
}
程式設計

Text Book
1. C How To Program, 4/e, by H. M. Deittel & P. J. Deitel
 Prentice Hall
2. The C Programming Language, by Kernighan & Ritchie
 Prentice Hall

Score Distribution
1. Homework: 20%
2. Mid-semester exam: 35%
3. Final exam: 35%
4. Teamwork project: 10%
Chapter 1 – Introduction to Computers and C++ Programming

Outline

1.1 Introduction
1.2 What Is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal Computing, Distributed Computing and Client/Server Computing
1.6 Machine Languages, Assembly Languages and High-level Languages
1.7 The History of C
1.8 The C Standard Library
1.9 The Key Software Trend: Object Technology
1.10 C++ and C++ How to Program
1.11 Java and Java How to Program
1.12 Other High-level Languages
1.13 Structured Programming
1.14 The Basics of a typical C Program Development Environment
Chapter 1 – Introduction to Computers and C++ Programming

Outline

1.15 Hardware Trends
1.16 History of the Internet
1.17 History of the World Wide Web
1.18 General Notes About C and this Book
Objectives

• In this chapter, you will learn:
 – To understand basic computer concepts.
 – To become familiar with different types of programming languages.
 – To become familiar with the history of the C programming language.
 – To become aware of the C standard library.
 – To understand the elements of a typical C program development environment.
 – To appreciate why it is important to learn C in a first programming course.
 – To appreciate why C provides a foundation for further study of programming languages in general and of C++ and Java in particular.
1.1 Introduction

- We will learn
 - The C programming language
 - Structured programming and proper programming techniques

- This book also covers
 - C++
 - Chapter 15 – 23 introduce the C++ programming language
 - Java
 - Chapters 24 – 30 introduce the Java programming language

- This course is appropriate for
 - Technically oriented people with little or no programming experience
 - Experienced programmers who want a deep and rigorous treatment of the language

1.2 What is a Computer?

• Computer
 – Device capable of performing computations and making logical decisions
 – Computers process data under the control of sets of instructions called computer programs

• Hardware
 – Various devices comprising a computer
 – Keyboard, screen, mouse, disks, memory, CD-ROM, and processing units

• Software
 – Programs that run on a computer
1.3 Computer Organization

- Six logical units in every computer:
 1. Input unit
 - Obtains information from input devices (keyboard, mouse)
 2. Output unit
 - Outputs information (to screen, to printer, to control other devices)
 3. Memory unit
 - Rapid access, low capacity, stores input information
 4. Arithmetic and logic unit (ALU)
 - Performs arithmetic calculations and logic decisions
 5. Central processing unit (CPU)
 - Supervises and coordinates the other sections of the computer
 6. Secondary storage unit
 - Cheap, long-term, high-capacity storage
 - Stores inactive programs
1.4 Evolution of Operating Systems

- **Batch processing**
 - Do only one job or task at a time

- **Operating systems**
 - Manage transitions between jobs
 - Increased throughput
 - Amount of work computers process

- **Multiprogramming**
 - Computer resources are shared by many jobs or tasks

- **Timesharing**
 - Computer runs a small portion of one user’s job then moves on to service the next user
1.5 Personal Computing, Distributed Computing, and Client/Server Computing

- **Personal computers**
 - Economical enough for individual

- **Distributed computing**
 - Computing distributed over networks

- **Client/server computing**
 - Sharing of information across computer networks between file servers and clients (personal computers)
1.6 Machine Languages, Assembly Languages, and High-level Languages

Three types of programming languages

1. Machine languages
 - Strings of numbers giving machine specific instructions
 - Example:

 +1300042774
 +1400593419
 +1200274027

2. Assembly languages
 - English-like abbreviations representing elementary computer operations (translated via assemblers)
 - Example:

 LOAD BASEPAY
 ADD OVERPAY
 STORE GROSSPAY
1.6 Machine Languages, Assembly Languages, and High-level Languages

Three types of programming languages (continued)

3. High-level languages
 • Codes similar to everyday English
 • Use mathematical notations (translated via compilers)
 • Example:

 \[
 \text{grossPay} = \text{basePay} + \text{overTimePay}
 \]
1.7 History of C

- C
 - Evolved by Ritchie from two previous programming languages, BCPL and B
 - Used to develop UNIX
 - Used to write modern operating systems
 - Hardware independent (portable)
 - By late 1970's C had evolved to "Traditional C"

- Standardization
 - Many slight variations of C existed, and were incompatible
 - Committee formed to create a "unambiguous, machine-independent" definition
 - Standard created in 1989, updated in 1999
1.8 The C Standard Library

- C programs consist of pieces/modules called functions
 - A programmer can create his own functions
 - Advantage: the programmer knows exactly how it works
 - Disadvantage: time consuming
 - Programmers will often use the C library functions
 - Use these as building blocks
 - Avoid re-inventing the wheel
 - If a premade function exists, generally best to use it rather than write your own
 - Library functions carefully written, efficient, and portable

/* A first program in C */
#include <stdio.h>
int main()
{
 printf("Welcome to C!");
 return 0;
}
1.9 The Key Software Trend: Object Technology

- **Objects**
 - Reusable software components that model items in the real world
 - Meaningful software units
 - Date objects, time objects, paycheck objects, invoice objects, audio objects, video objects, file objects, record objects, etc.
 - Any noun can be represented as an object
 - Very reusable
 - More understandable, better organized, and easier to maintain than procedural programming
 - Favor modularity
1.10 C++ and C++ How to Program

• C++
 – Superset of C developed by Bjarne Stroustrup at Bell Labs
 – "Spruces up" C, and provides object-oriented capabilities
 – Object-oriented design very powerful
 • 10 to 100 fold increase in productivity
 – Dominant language in industry and academia

• Learning C++
 – Because C++ includes C, some feel it is best to master C, then learn C++
 – Starting in Chapter 15, we begin our introduction to C++
1.11 Java and Java How to Program

• Java is used to
 – Create Web pages with dynamic and interactive content
 – Develop large-scale enterprise applications
 – Enhance the functionality of Web servers
 – Provide applications for consumer devices (such as cell phones, pagers and personal digital assistants)

• Java How to Program
 – Closely followed the development of Java by Sun
 – Teaches first-year programming students the essentials of graphics, images, animation, audio, video, database, networking, multithreading and collaborative computing
1.12 Other High-level Languages

- Other high-level languages
 - FORTRAN
 - Used for scientific and engineering applications
 - COBOL
 - Used to manipulate large amounts of data
 - Pascal
 - Intended for academic use
1.13 Structured Programming

• **Structured programming**
 – Disciplined approach to writing programs
 – Clear, easy to test and debug and easy to modify

• **Multitasking**
 – Specifying that many activities run in parallel
1.4 Basics of a Typical C Program Development Environment

- **Phases of C++ Programs:**
 1. **Edit**
 2. **Preprocess**
 3. **Compile**
 4. **Link**
 5. **Load**
 6. **Execute**
1.15 Hardware Trends

• Every year or two the following approximately double:
 – Amount of memory in which to execute programs
 – Amount of secondary storage (such as disk storage)
 • Used to hold programs and data over the longer term
 – Processor speeds
 • The speeds at which computers execute their programs
1.16 History of the Internet

• The Internet enables
 – Quick and easy communication via e-mail
 – International networking of computers

• Packet switching
 – The transfer of digital data via small packets
 – Allows multiple users to send and receive data simultaneously

• No centralized control
 – If one part of the Internet fails, other parts can still operate

• TCP/IP

• Bandwidth
 – Information carrying capacity of communications lines
1.17 History of the World Wide Web

- **World Wide Web**
 - Locate and view multimedia-based documents on almost any subject
 - Makes information instantly and conveniently accessible worldwide
 - Possible for individuals and small businesses to get worldwide exposure
 - Changing the way business is done
1.18 General Notes About C and This Book

• **Program clarity**
 – Programs that are convoluted are difficult to read, understand, and modify

• **C is a portable language**
 – Programs can run on many different computers
 – However, portability is an elusive goal

• **We will do a careful walkthrough of C**
 – Some details and subtleties are not covered
 – If you need additional technical details
 • Read the C standard document
 • Read the book by Kernigan and Ritchie